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AbstrAct
Massive devices connected through fifth-gen-

eration (5G) networks constitute a ubiquitous 
Internet of Things (IoT), providing diverse service 
applications in a smart city. A robust network 
topology structure against cyber-attacks is the 
foundation of highly reliable service quality, espe-
cially in next-generation networks or beyond 5G 
(B5G) networks. Existing methods apply neural 
networks with deep reinforcement learning meth-
ods to advance the network topology. Howev-
er, the reduction of unique hardware resource 
constraints and the application of edge intelli-
gent networking capability of terminal nodes are 
emerging challenges for robustness optimization 
of IoT with 5G and B5G networks. To address 
these problems, we design a distributed learning 
framework utilizing edge intelligence, improv-
ing smart terminal nodes’ networking capability, 
which is deployed on ordinary computers instead 
of specialized hardware such as GPUs. The pro-
posed framework leveraging multi-core CPU and 
intelligent edge methods decreases the training 
time and economic cost and takes full advantage 
of computer resources. Furthermore, the best 
performing framework considers the distributed 
communication model of edge computing and 
optimizes the network topology by taking advan-
tage of smart terminal nodes’ contributions. We 
show that the framework succeeds in various 
topologies and outperforms compared with other 
state-of-art algorithms in improving the robustness 
for IoT topology in smart cities.

IntroductIon
The robust network topology provide rich appli-
cation services for the Internet of Things (IoT) 
[1] with the emerging technologies for fifth-gen-
eration (5G) and beyond 5G (B5G) networks. 
Nowadays, a stable adaptive robust topology is 
particularly important due to the complexity of 
application scenarios and the variability of net-
work service requirements, such as intelligent 
agriculture [2], smart city [3], smart ocean [4], 
intelligent transportation [5], etc. Benefit for the 
high speed and bandwidth of 5G and B5G, mas-
sive smart sensor devices can be connected to 
form a highly heterogeneous complex IoT. Failure 
of some nodes causes the global network’s chain 
collapse effect, which makes the global network 
unable to communicate. Therefore, designing 

reliable network topologies for 5G and B5G net-
works are drawn much attention from research-
ers. A variety of solutions have been proposed 
to improve network topology’s robustness [6–8]. 
These algorithms share a common idea: the best 
optimum topology is searched by the evolution 
framework and takes more computing resources 
and time.

Robustness optimization of network topology 
represents improving the resistance to cyber-at-
tacks, including self-failure, invasion attacks, disas-
ter attacks, etc. Many existing algorithms evaluate 
performance with several types of attacks. Some 
proposed learning frameworks [3] utilize cen-
tralized architectures to optimize the network-
ing for IoT in smart cities, which can dynamically 
and intelligently adjust the IoT topology to main-
tain high communication capability. However, 
these frameworks rely too heavily on specialized 
hardware such as GPUs and ignore smart ter-
minal nodes’ contributions to the IoT topology 
in a smart city. With the rise of edge computing 
technology with 5G and B5G [9], smart terminal 
nodes have an important influence on the whole 
network robustness, which is considered to opti-
mize the IoT network topology.

Besides, classic solutions modify the links 
between devices connected while keeping the 
number of links the same. Hill Climbing algorithm 
[6] improves the resistance to cyber-attacks for 
IoT, but it is prone to be falling into local opti-
mum. Simulated Annealing algorithm [7] changes 
the links of IoT in a probabilistic and can search 
the global optimum. Besides, through analyzing 
the formation of the local optimum, multi-popula-
tion genetic algorithm [8] utilizes evolution com-
puting to obtain the best solution. On the other 
hand, an intelligent learning algorithm (NN) [3] 
based on a neural network is proposed to reduce 
the computational overhead and accelerate the 
optimizing process.

Moreover, with the improvement of network 
nodes’ hardware performance and the construc-
tion of 5G and B5G networks, smart terminal 
nodes can execute several computing tasks under 
the support of edge computing technology [1]. 
Therefore, a distributed training model of edge 
computing method is utilized to accelerate IoT 
topologies’ optimization robustness. Given that 
the limitation of hardware computing resources, 
we deploy a distributed communication training 
model [10] to construct a robust IoT topology, 
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EDGE INTELLIGENCE FOR BEYOND 5G NETWORKS which provides better data analysis and communi-
cation capacity services for applications in 5G and 
B5G networks.

In this article, we design a very different para-
digm for the robustness optimization of network 
topology for IoT, referred to as edge computing 
communication methods. Instead of a single cen-
tralized neural network training model, we asyn-
chronously execute distributed multiple models 
parallel with multiple instances of the network 
topology, which includes a global learning model 
and several edge local learning models [10]. Each 
learning instance is like an edge learning node, 
responsible for optimizing the local model and 
then communicating with the global model. The 
paradigm also decorates the models’ data into 
a stationary process because each model expe-
riences various states at each training step. Each 
model runs a deep reinforcement learning frame-
work which is input different IoT topology data. 
This strategy enables more kinds of samples on 
the model with more edge nodes, which learn 
practical optimization approaches, accelerate the 
convergence, and improve performance.

Our proposed parallel distributed networking 
robustness optimization mechanism also offers 
practical benefits. Whereas previous approaches 
to machine learning [3] rely heavily on specialized 
hardware such as GPUs, our mechanism executes 
on a single machine with a standard multi-core 
CPU [10]. Besides, we run a distributed commu-
nication mechanism according to edge comput-
ing methods. Furthermore, we consider a general 
attack method to evaluate the performance of the 
algorithm [3, 8, 11], namely Degree Centrality. 
The best of the proposed method masters several 
state-of-art existing solutions. Nowadays, 5G tech-
nology can be applied to many scenarios of smart 
cities, i.e., intelligent transportation, smart drones, 
monitoring system, smart office, etc., as shown in 
Fig. 1. The server stores the topology of a smart 
city and converts it into a state vector. The glob-
al learning model has better networking optimi-
zation effectiveness than each edge local model 
[10]. Furthermore, we design an asynchronous 
communication mechanism for the global learn-
ing model and edge local learning model. The 
optimized edge local learning model will commu-
nicate with the global learning model during step 
interval based on the “optimization-first, commu-
nication-first” rule.

The rest of the article is organized as follows. 
We introduce the advanced researches and sever-
al fundamental conceptions about the networking 
optimization of 5G or B5G IoT topologies in a 
smart city. Then, we outline the framework. We 
present the technical details of our asynchronous 
learning model with the deep reinforcement 
learning method. Next, the simulation and experi-
mental results are discussed. Finally, we conclude 
this article.

conceptIons About robustness optImIzAtIon
Initial Topology Construction. Scale-free network 
model [12] generally is strong robust against ran-
dom attacks, which represent that nodes or links 
may be equally failed in networks and is fragile 
resistant to malicious attacks or intentional attacks, 
which means that important nodes or links may 
be prone to be failed in networks. We can order 

the important nodes by utilizing the degree cen-
trality, betweenness centrality, etc. [3, 8]. To take 
full advantage of scale-free mode, researchers [3, 
6, 8, 11] improve robustness against malicious 
attacks of network topologies constructed by 
scale-free model. However, in 5G and B5G IoT 
applications, there are some limitations when con-
structs the network topology:
1. The communication ranges of nodes or the dis-

tance between nodes cannot be infinitely long 
because each smart terminal node has limited 
energy to maintain long-distance communica-
tion services.

2. The number of nodes cannot be infinitely large 
since each node cannot apply all computing 
resources to provide a high quality of commu-
nication connection and ignore other tasks

Therefore, in this article, the network topology 
follows these constraints based on the scale-free 
policy.

Robustness Optimization. Herrmann et al. [6] 
used a greedy edge-swapping strategy to improve 
the network’s ability to resist malicious attacks. 
To acquire the global optimum, Schneider et al. 
[11] proposed a probability-based edge swapping 
algorithm that avoids the local optimum solution. 
However, the computational overhead is high, 
and Qiu et al. [8] presented a multi-population 

FIGURE 1. In a smart city, the topology of 5G and B5G for IoT can be modeled 
by servers and then converted to state vector. We input the topology state 
vector to the asynchronous learning model. In the local training phase, 
each thread T executes an exclusive deep reinforcement learning model. 
Individual topology optimization policies are obtained through the local 
actor-network LAN, action mapping operator, and local critic network LCN. 
Threads share the global learning phase, and global actor-network GAN 
and global critic network GCN update their parameters asynchronously 
through pulling each local training model.
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genetic algorithm that effectively increases the 
robustness of the IoT topology. For intelligently 
dynamically optimizing network topology, Chen 
et al. [3] proposed a dynamic networking opti-
mization method with a neural learning network. 
However, both the relevance of sample data and 
supervised learning behavior reduce the robust 
optimization of network topology. Therefore, in 
this article, we propose an asynchronous distribut-
ed learning strategy with smart terminal nodes to 
accelerate the learning model’s convergence and 
reduce the dependency on specialized hardware. 
We apply an edge computing communication 
method to connect the global learning model and 
edge local learning models. For measuring the 
robustness of networks, we utilize the popular 
metric [11] which statistics the remaining max-
imum connected component of the network 
topology after each attack.

Asynchronous Learning. Unlike the existing 
approaches [3] relying heavily on specialized 
hardware such as GPUs, Mnih et al. [10] propose 
asynchronous methods for deep reinforcement 
learning, which reduce half the time for training 
on a single multi-core CPU machine. Concern-
ing updating parameters [13], the gradients q 
are asynchronously sent to the shared global net-
work model, which updates a global copy of the 
model. Meanwhile, the updated parameters are 
sent to local networks at fixed intervals. Each local 
network contains an actor-network LAN, which 
acts in the same topology vector s and a critic 

network LCN that evaluates the performance of 
policy generated by LAN. In this article, we set 
each local learning model as an edge intelligence 
node, which optimizes the local network topolo-
gy, and the global learning model aggregates the 
parameters sent by local models. We utilize the 
asynchronous learning mechanism to improve the 
resistance to cyber-attacks and reduce IoT appli-
cations’ computational overhead.

prelImInAry
This section focuses on the construction of net-
work topology for 5G and B5G IoT networks and 
the framework of deep reinforcement learning.

envIronment stAte
The network topology of IoT applications con-
nected by 5G and B5G is converted to a state 
vector as environment state s that inputs into each 
local learning network model. First, the topology 
is transformed into an adjacency matrix shown 
in Fig. 2. Then, we remove the non-neighbors’ 
nodes from the adjacency matrix to eliminate the 
redundant topology information, which reduces 
the overhead of topology storage. For example, 
node b has neighbors c, d, and non-neighbors a, 
e. We only reserve the necessary nodes’ informa-
tion and remove the redundancy nodes, such as 
f. Finally, for node b, in the topology state vec-
tor s, we remain the neighbor nodes’ connection 
information. Other nodes also convert to the state 
vector according to this criterion.

deep reInforcement leArnIng
Actor Network. This article applies a poli-

cy-based model-free reinforcement model, includ-
ing actor-network (policy learning) and critic 
network (evaluation learning). Besides, to deal 
with the discrete action selected by actor-net-
work, we design an action mapping operator to 
convert the continued action to an exclusive dis-
crete action strategy, which can optimize the net-
work topology with high resistance cyber-attacks. 
Through the input of environment state vector s, 
the actor-network trains the action selecting the 
policy, alters the connections of nodes for 5G and 
B5G network topologies.

Action Mapping Operator. Because the model 
of deep reinforcement learning [10] cannot com-
pletely address the robustness optimization for 
IoT network topology, which has discrete action 
instead of continuing action [14], such as robot 
arm control. As shown in Fig. 3, each action we 
select is valid. We note that the edge swapping 
operator only involves two-node pairs by analyz-
ing the topology edge swapping strategy [6, 7]. 
For example, nodes h, g, k, p are selected as a 
valid action combination (p, h), (g, k). Before we 
change the connection, we need to make sure 
that the candidate actions are available valid. If 
there is more than one action combination, we 
select one action that makes the network topol-
ogy more robust and finally executes the edge 
swapping strategy.

Critic Network. When we get an action pol-
icy, we evaluate the policy in the next step and 
predict the direction of the action policy learn-
ing in the future. The next topology state st+1 and 
action policy are input the critic network, which 
can criticize the performance of the action policy. 

FIGURE 2. Network topology of 5G and B5G IoT firstly converts to an adjacen-
cy matrix, then we eliminate redundant information, and finally, we obtain 
the topology state vector s, which can completely represent the network 
topology of IoT.
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Through the critic network evaluating, the action 
policy is adjusted to optimize 5G and B5G IoT 
topologies’ robustness. Besides, the critic policy 
deployed in global learning and local edge mod-
els can improve the efficiency of action selection 
by reducing selecting actions.

technIcAl detAIls
In this section, we introduce the details of the pro-
posed distributed learning model, including edge 
local training and global learning, as shown in Fig. 
4. The distributed framework reduces computing 
resource overhead and improves optimization 
efficiency.

Local Training. Each core of the multi-core 
CPU runs an exclusive deep reinforcement learn-
ing model defined as the worker or local learning 
model. The initialization of parameters of mod-
els, including workers and global network, is the 
same. For workers, the same initial environment 
state s is assigned to them. As shown in Fig. 4, 
worker obtains an action selecting policy p(s) and 
the evaluation V(s) based on environment state 
s. Generally, due to the limitation of each core’s 
computing power, local models can not complete 
tasks at the same time. Therefore, we update 
local and global parameters asynchronously. The 
local model worker shares parameters q with the 
global network every few cycles. We should note 
that the local edge model worker that finishes the 
training task first communicates with the glob-
al model: first completion, first communication. 
Besides, each local edge model does not wait for 
each other to finish the task. However, each other 
waits for others until the final training is complete.

Global Learning. When local model worker 
has its parameters q, the global network will pull 
worker’s parameters to assign its model. Howev-
er, in this article, we assign the gradient of the 
parameters Dqi instead of simply assigning param-
eters [10]. The global network also executes the 
action policy p(s) and policy evaluation V(s). As 
shown in Fig. 4, the updates of global network is 
defined as q + hDqi, where q is the parameter of 
global network and h is a discount factor which 
ranges (0, 1). If one local model worker 1 has fin-
ished the task, then the global network updates 
its parameters based on q + hDq1. Then, to accel-
erate the speed of convergence and obtain the 
best solutions, we distribute global parameters 
q to each local model worker so that the local 
model can train the best solution as fast as pos-
sible. Each local model worker continues training 
under this gradient and shares the parameters Dqi 
with the global parameters q after a certain num-
ber of steps.

Objective Function. We discuss the details of 
the objective loss function of the asynchronous 
learning model. The objective loss function that 
the model minimizes contains three parts [14], 
policy loss Lp, evaluation loss Lv, and policy entro-
py Lreg which balances the output distribution to 
avoid the centralization of action sampling. In pol-
icy loss Lp, we introduce an advantage function 
[14] a(s, a) to evaluate the performance of the 
action. Concerning evaluation loss Lv, we apply 
the reward value r based on the Q-learning model 
to describe the situation of the environment state 
s. For policy entropy Lreg, we calculate the entro-
py of the action policy h(p(s)). The three loss func-

tions are added with regular factors defined as 
objective loss function L.

experIments
To better extract valid information of nodes for 
5G and B5G IoT in a smart city, we utilize deep 
reinforcement learning framework [15] executed 
by python language to simulate experiments on 
multi-core CPU machine with Intel(R) Core(TM) 
i7-8700K CPU @ 3.70GHz. Note that we only 
apply 6 cores to simulate the proposed algorithm. 
The nodes of IoT are randomly deployed in a 
500m * 500m sensing area. The communication 
range of each node is set to 200m, which main-
tains enough neighbors. Many experiments assign 
the parameters of the proposed model. A robust 
network topology is constructed through the sim-
ulated experiments to provide a better quality of 
services for 5G and B5G network applications.

For the local training task, if each local net-
work does not produce better results within 200 
iterations, we terminate the local learning phase 
and restart the task. As shown in Fig. 5, we pres-
ent the robustness evaluation of the global net-
work for a 100-nodes topology with link density 
2. As for the calculation of robustness, we con-
sider the previously existing algorithm based on 
the maximal connected component [3, 8]}. The 
curve shows an improving trend with the growth 
of iterations. The maximal 75.85 percent is got at 
the 7545th iteration. The global learning model 
aggregates the model parameters provided by 
local learning models, which explore different 
learning directions according to the same envi-
ronment. The global learning model has better 

FIGURE 4. Each worker executes the action selecting policy pn(s) and evaluate 
the performance Vn(s) of the policy p. The parameters of local networks 
and global networks are asynchronously shared.
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performance than local learning models because 
the global learning model obtains the most appro-
priate learning parameters by accessing all the 
environment’s local learning situations.

We compare our algorithm with other state-
of-art algorithms, including Hill Climbing [6], 
Simulated Annealing [7], and multi-populations 
genetic algorithm (MPGA) [8]. These heuristic 
methods have a disadvantage in computational 
overhead, which keeps the initial degree distribu-
tion unchanged. Figure 6 shows the optimization 
results in different sizes of IoT topology, which 
are 100, 200, 300, 500 nodes with link density 2. 
From Fig. 6, our algorithm has better performance 
than other algorithms. However, when IoT topol-
ogy size is less than 300 nodes, our algorithm 
outperforms MPGA. In 300 and 500 nodes, the 
proposed algorithm and MPGA have little differ-
ence. Overall, the asynchronous learning algo-
rithm can dynamically and intelligently optimize 
the networking robustness of IoT topologies.

conclusIon
This article proposes a novel asynchronous dis-
tributed learning networking optimization with 
smart terminal nodes for IoT in smart cities. We 
presented the local training and global learning 
phases, which rely on a multi-core CPU machine 
instead of specialized GPUs. Each local model 
can communicate with the global model to share 
the parameters that accelerate the speed of con-
vergence for the learning model. The experiment 
results show that the robustness of IoT topolo-
gy against cyber-attacks is enhanced significantly 
by the learning model. The model outperforms 
other state-of-art algorithms in resisting malicious 
attacks. For future research, we will explore dis-
tributed edge machine learning in the topology 
optimization of IoT for 5G and B5G networks.
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FIGURE 6. The comparison with other algorithms.
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